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Editorial note: 

 
Diffuse large B-cell lymphoma (DLBCL) is the commonest subtype of non-Hodgkin lymphoma, accounting 

for about 30% to 40% of newly diagnosed non-Hodgkin lymphoma worldwide and in Hong Kong. In this 

topical update, Dr Choi Wai Lap reviews the genetic basis of DLBCL and its impact on classification, 

prognosis and even treatment. We welcome any feedback or suggestions. Please direct them to Dr. WS 

Wong (e-mail: sws_wong@yahoo.com.hk) of Education Committee, the Hong Kong College of 

Pathologists. Opinions expressed are those of the authors or named individuals, and are not necessarily those 

of the Hong Kong College of Pathologists. 
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Introduction 

 

Diffuse large B-cell lymphoma (DLBCL) is the 

commonest subtype of non-Hodgkin lymphoma, 

accounting for about 30% to 40% of newly 

diagnosed non-Hodgkin lymphoma worldwide 

and in Hong Kong.1 DLBCL is heterogeneous in 

clinical presentation, morphology, 

immunophenotype, cytogenetics and prognosis. In 

the WHO Classification of Tumours of the 

Haematopoietic and Lymphoid Tissues published 

in 2008, several specific clinicopathological 

entities of DLBCL have been recognized, while 

leaving the rest to DLBCL, not otherwise 

specified, which is by far the most prevalent entity 

among the large B-cell lymphomas.2 In the 

following discussion, the term DLBCL will be 

used interchangeably with DLBCL, not otherwise 

specified. 

 

Gene expression profiling and molecular 

classification of DLBCL 

 

Gene expression profiling (GEP) is the 

simultaneous measurement of the transcription 

levels of thousands of genes to their 

corresponding messenger RNAs (mRNAs).  GEP 

can be achieved by various technologies including 

DNA microarray, serial analysis of gene 

expression (SAGE) and most recently next 

generation sequencing (RNA-Seq).  

 

Using DNA microarray technology on DLBCL, 

two distinct molecular subgroups were discovered 

based on the similarity of their gene expression 

pattern with a possible cell of origin (COO): the 

germinal centre B-cell-like (GCB-cell-like, or 

abbreviated as GCB) and the activated B-cell-like 

(ABC-like, or abbreviated as ABC).3 These 

molecular subgroups showed significantly 

different survival rates when treated with 

conventional cyclophosphamide, doxorubicin, 

vincristine and prednisolone (CHOP) 

chemotherapeutic regimen.   

 

In order to facilitate the classification process by 

GEP, a statistical method based on Bayes' rule 

was then developed to estimate the probability of 

membership.4 Cases that had less than 90% 

probability of belonging to either molecular 

subgroup would be regarded as ‘unclassified’ 

molecularly.4 This statistical method laid the 

foundation of subsequent GEP studies using DNA 

microarray technology, which further confirmed 

the prognostication of the GCB and ABC 

molecular subgroups, even with the addition of 

rituximab to the CHOP (R-CHOP) regimen.5, 6  

 

Immunohistochemical (IHC) algorithms to 

approximate the COO classification of DLBCL 

 

Although the COO molecular classification of 

DLBCL is a powerful prognosticator, it is fairly 

difficult to apply in routine anatomical pathology 

practice.  This can be attributed to the lack of 

expertise and facilities for DNA microarray in 

routine diagnostic laboratories, the relatively high 

costs of these DNA microarray chips, and the 

requirement of snap-frozen diagnostic materials.   

 

Hans et al., therefore, developed an IHC algorithm 

based on GEP results using three IHC stains: 

CD10, BCL6 and MUM1/IRF4 in 2004.7 While 

the Hans algorithm is relatively simple and has 

been used most extensively in clinical trials, it has 

been criticized for basing on treatment results of 

CHOP instead of R-CHOP, which have become 

the standard regimen for DLBCL.  

 

Other IHC algorithms using different IHC stain 

combinations and different cutoff levels of the 

various markers were thus developed in patients 

treated with R-CHOP, including the Nyman, Choi, 

Tally and Visco-Young algorithms.8-11 The first 

three of these and the Hans algorithm were 

compared head to head, and correlated with DNA 

microarray data of DLBCL samples from patients 

treated with R-CHOP.10 In that comparison, the 

Tally, Choi and Hans algorithms all showed high 

sensitivity, specificity and predictive values. The 

three algorithms also showed high concordance 

with DNA microarray results at 93%, 87% and 

86%, respectively. However, the Nyman 

algorithm had a low sensitivity and negative 

predictive value despite showing a fairly high 

concordance (81%).10  

 

The most recent Visco-Young algorithm seemed 

to have a high concordance rate to DNA 

microarray data at 92.6%, but the sensitivity, 
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specificity and predictive values were uncertain.11 

Besides, the hazard ratios of the COO molecular 

classification in univariate and multivariate 

analyses appeared to be less marked compared 

with the Nyman, Choi and Tally algorithms.10, 11  

 

The long list of IHC algorithms may seem 

puzzling and difficult for the anatomical 

pathologists to choose, but it seems that the Hans, 

Choi and Tally algorithms are among the most 

robust.  Individual laboratory may choose among 

these three algorithms based on the availability of 

the IHC stains and familiarity to these algorithms. 

 

Other IHC markers useful for prognostication 

of DLBCL treated with R-CHOP 

 

In recent years, additional markers for further 

refinement of the prognostication within the GCB 

and ABC DLBCL subgroups emerged.  Meyer et 

al. found that any SPARC expression in DLBCL 

microenvironment was associated with a 

significantly longer overall survival, and patients 

with high SPARC positivity in the 

microenvironment also had a significantly longer 

event-free survival. These survival differences 

were mainly due to the prognostic effect of 

SPARC positive cells in the ABC subgroup, but 

not in the GCB subgroup.12 Perry et al. further 

combined the COO classification, SPARC 

expression and microvessel density to formulate a 

new biologic prognostic model for all DLBCL, 

with the non-GCB phenotype, SPARC expression 

<5% and microvessel density quartile 4 being 

adverse factors for outcome.13   

 

BCL2 expression predicted for inferior survival in 

patients with GCB DLBCL but not ABC DLBCL 

when R-CHOP was used.14 Since the high BCL2 

expression in GCB DLBCL is due to the t(14;18) 

translocation,13 it is not surprising that patients 

with GCB DLBCL harbouring BCL2 

translocations would have poor outcomes.15 

Similar to the double-hit B-cell non-Hodgkin 

lymphomas with both MYC and BCL2 

translocations, recent studies also found that MYC 

and BCL2 protein co-expression in DLBCL 

predicted for poor outcomes,16-18 and it was 

observed that MYC/BCL2 co-expression was 

commoner in ABC DLBCL,17, 18 which appeared 

to contribute significantly to their gene expression 

signature and adverse outcome of ABC 

DLBCL.17Another study also confirmed that high 

MYC expression, high BCL2 expression and low 

BCL6 expression were independent adverse 

factors for survival of DLBCL patients, and an 

IHC score based on the expression of these 

proteins and the MYC translocation status was also 

predictive for survival.19 

 

The expression of CD30 was recently observed to 

predict for superior 5-year overall and 

progression-free survival, with this favourable 

outcome maintained in both the GCB and ABC 

subgroups.20 

 

Among these prognostic markers discovered in 

the last few years, it seems that the combination of 

MYC and BCL2 expression is relatively easy to 

apply and has the potential of pinpointing about 

30% of the DLBCL cases with incurable disease 

and poor survival outcomes when treated with the 

current standard R-CHOP regimen. Additionally, 

this segregation may be independent of the COO 

classification.  Future clinical trials applying these 

newer markers or marker combinations are 

awaited. 

 

Genetic alterations of GCB DLBCL 

 

In the recent few years, global screening of the 

genomes and transcriptomes of DLBCL using 

next generation sequencing (NGS) have rapidly 

broadened our understanding of the pathogenesis 

of the COO subgroup of DLBCL. These studies 

showed that certain genetic alterations are 

associated with individual molecular subgroups, 

shedding light on the oncogenic pathways that are 

essential for the GCB and ABC DLBCL.  

 

As aforementioned, the t(14;18) is found in about 

35% GCB DLBCL, leading to over-expression of 

BCL2, which is a key anti-apoptotic protein in 

GCB DLBCL.21 The over-expression is due to the 

juxtaposition of BCL2 to the potent regulatory 

elements of the immunoglobulin locus in the 

t(14;18), as well as by disrupting the suppression 

by BCL6.22, 23 Other mechanisms of BCL2 up-

regulation found in GCB DLBCL without a 

t(14;18), include deregulation of Miz1, aberrant 
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somatic hypermutation of BCL2 promoter 

sequences, and mutations in the BCL2 coding 

sequence.22, 24  

 

About 15% of DLBCL harbour the t(8;14) which 

brings the MYC gene under the control of the 

immunoglobulin promoter, but this translocation 

is found in both COO subgroups.25, 26 

Amplifications of the microRNA (miR) 17-92 

cluster on chromosome 13q are found in 12% of 

GCB DLBCL.27 This cluster acts as a potential 

oncogene and accelerates MYC-induced 

lymphomagenesis and enhances oncogenesis by 

increasing proliferation and survival via inhibition 

of the tumor suppressor PTEN and thus activation 

of AKT.27-30 Alternative mechanisms of inhibition 

of PTEN include deletions of PTEN on 

chromosome 10q, which are found in around 11% 

of DLBCL with a preference in GCB DLBCL, 

and are mutually exclusive to the miR-17-92 

amplifications.27, 30 Similarly, AKT can also be 

activated by phosphatidylinositol 3 kinase (PI3K) 

with activating mutations, which are found in 

about 8% of DLBCL, and are mutually exclusive 

to the loss of PTEN.31 GNA13 mutations are 

present in up to 25% of GCB DLBCL.32, 33 

GNA13 encodes G13, a G-protein that increases 

Rho-mediated motility, and Rho-mediated 

increased PTEN activity and potent AKT 

inhibition.34, 35 GNA13 mutations thus probably 

contribute to the spread of the neoplastic cells 

outside of the germinal centre niche and the 

deregulation of the AKT/mTOR pathway. 

 

The chromatin modifying genes seem to play key 

roles in GCB DLBCL pathogenesis, as mutations 

of a number of these genes are preferentially 

found in GCB DLBCL.  Recurrent activating 

mutations affecting residue Tyr641 of the 

polycomb-group histone methyltransferase EZH2 

have been found in 21.7% of GCB DLBCL.36 

Mutated EZH2 trimethylates Lys27 of histone H3 

and represses gene expression more vigorously by 

increased affinity to the substrate.36-38 Another 

histone methyltransferase MLL2 is mutated in 

around 30% of DLBCL, with the majority of the 

mutations being inactivating ones.32, 36 Myocyte 

enhancer factor 2B (MEF2B) is a DNA binding 

protein that cooperates with histone modifying 

enzymes to regulate gene expression, and is 

mutated in about 9% of DLBCL.32, 36 In one study, 

monoallelic deletions and inactivating mutations 

of CREBBP and EP300 were found in nearly 39% 

of GCB DLBCL and only 17% of ABC DLBCL.39 

These two acetyltransferases are transcriptional 

co-activators in multiple signaling pathways. For 

instance, CREBBP and EP300 acetylate and 

inactivate BCL6 by disrupting the recruitment of 

histone deacetylases and thus hindering the ability 

of BCL6 to repress transcription.40, 41 

 

Mutations of p53 are more frequent in GCB 

DLBCL than in ABC DLBCL (38% vs 18%). 

Most of the mutations are missense or nonsense 

inactivating mutations, and mutated p53 confer 

worse survivals within both the GCB and ABC 

subgroups of DLBCL.42  

 

Genetic alterations of ABC DLBCL 

Constitutive activation of NF-B plays an 

important role in ABC DLBCL survival,43, 44 

which can be due to several distinct genetic 

alterations affecting both positive and negative 

regulators of the pathway. These genetic 

alterations are thus predominantly seen in ABC 

DLBCL.  TNFAIP3 encodes for the negative NF-

B regulator A20 and is inactivated in about 30% 

of cases of DLBCL by biallelic mutations and/or 

deletions,45 which are almost exclusively found in 

ABC DLBCL and rare in GCB DLBCL.45-48  

The B-cell receptor (BCR) induced activation of 

NF-B requires CARD11, a scaffold protein that 

mediates the activation of IB kinase .49 

Mutations of CARD11 are found in around 10% 

of ABC DLBCL and a smaller subset of GCB 

DLBCL.45 These mutants probably activate the 

NF-B pathway in the absence of BCR signaling 

and lead to constitutive NF-B activation.50 

CD79A and CD79B are proximal BCR subunits 

and were found to be mutated in around 20% of 

ABC DLBCL.43 The mutations increase surface 

BCR expression and abrogate a feedback inhibitor 

of BCR signaling,43 leading to chronic active BCR 

signaling and consequent activation of the NF-B 

pathway. 

NF-B is also activated after stimulation of Toll-

like receptors (TLR) and interleukin (IL)-1 and 8 
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receptors.51, 52 MYD88 functions as a signaling 

adaptor protein and assembles a protein complex 

that activates NF-B following TLRs, and IL-1 

and IL-8 receptor stimulations.51, 52 MYD88 

mutations are found in about 30% of ABC 

DLBCL. They all lead to the same amino acid 

substitution (L265P) in the TLR/IL-1 receptor 

domain.53 The MYD88 L265P mutant may 

promote cell survival by activating NF-B 

signaling.53  

Normal GC B-cell development into plasma cells 

requires down-regulation of BCL6 by NF-B, and 

expression of IRF4, BLIMP1 and XBP1.54-56 In 

ABC DLBCL, several mechanisms that can 

interrupt this GC B-cell to plasma cell transition 

occur. Chromosomal translocations of BCL6 on 

chromosome 3q27 are detected in about 35% of 

DLBCL cases, and are twice commoner in ABC 

DLBCL than in GCB DLBCL.57-60 The 

commonest translocations involve the 

immunoglobulin heavy-chain promoter, resulting 

in constitutive expression of BCL6.60, 61 

Deregulated expression of BCL6 is thought to 

result in differentiation blockage, reduced p53-

mediated apoptotic response to DNA damage, and 

enhanced proliferation.23, 54, 55, 62-64  

The PRDM1 gene on chromosome 6q21 encodes 

for BLIMP1, a zinc finger transcriptional 

repressor that represses genes involved in BCR 

signaling and proliferation, and acts as a tumour 

suppressor.65-67 Inactivating mutations and 

deletions of PRDM1 are found in up to 30% of 

ABC DLBCL.67-70 Additionally, PRDM1 can be 

inactivated by transcriptional repression through 

constitutively active BCL6, as it is the case in 

patients carrying BCL6 translocations. Indeed, 

chromosomal translocations of BCL6 and genetic 

alterations affecting PRDM1 are mutually 

exclusive.68-70  

Amplifications of chromosome 18q21 and gain of 

BCL2 gene are observed in 21% and 46% of ABC 

DLBCL, respectively.  Together with NF-kB 

transactivation, they likely contribute to the BCL2 

over-expression observed in 59% of ABC 

DLBCL.71 Amplifications of the telomere of 

chromosome 19q are found in about 25% of ABC 

DLBCL.27 SPIB, an ETS family transcription 

factor, may be a possible candidate gene on 

chromosome 19q essential for ABC DLBCL as 

down-regulation of SPIB was toxic to ABC 

DLBCL cell lines.27  

Homozygous or heterozygous deletions of the 

INK4a/ARF locus are observed in about 30% of 

ABC DLBCL.27 P16INK4a and p14ARF regulate the 

pRB and the p53 tumour suppressors, and 

inactivation of the p53 pathway via INK4a/ARF is 

found to inhibit apoptosis.72, 73 

 

Conclusions 
 

The emergence of technologies like DNA 

microarray and next generation sequencing has 

unraveled the molecular and genetic basis of 

DLBCL.  The much better understanding of the 

pathogenetic pathways and the potential targets 

along these pathways has gradually opened the 

door for potential personalized medicine or 

tailored therapy for DLBCL patients in future.  

Pathologists should be prepared to provide such 

information of molecular classification and 

genetic alterations of DLBCL when such a day 

comes. 
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